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ABSTRACT

This paper discusses the vowel pronunciation quality assessment 
of our computer assisted Mandarin Chinese learning system. Under 
the speech recognition framework, phonetic pronunciation 
assessment is usually based on the phonetic posterior probability 
score, which may be computed by normalizing the frame-based 
posterior probability or be calculated on the phone segment 
directly. By the first method, we can achieve a human-machine 
scoring correlation coefficient (CC) of 0.832 for vowel; and by the 
second, the CC can be up to 0.847. In order to improve the 
performance, we suggest employing the formant feature of vowel. 
This paper proposes a novel method to utilize formant: we plot 
formant candidates of each frame on the time-frequency plane to 
form a bitmap, and then extract its Gabor feature for pattern 
classification. When we use the classification probability score for 
pronunciation assessment, we get a CC of 0.842. Finally we 
combine the three scores with various linear or nonlinear methods; 
the best CC of 0.913 is gotten by using neural network. 

Index Terms— Computer Assisted Language Learning, 
Speech Recognition, Formant, Gabor Feature, Neural Network. 

1. INTRODUCTION 

Over the last decades many research groups have investigated on 
automatic pronunciation quality assessment by speech recognition 
techniques [1-5]. Some works were focused on the assessment at 
speaker level and sentence level [1-4]; some others were focused 
on the assessment at phone level [5]. This paper is about some 
improvements of Chinese Mandarin vowel pronunciation 
evaluation. The phonetic evaluation is traditionally based on the 
phonetic posterior probability score under the speech recognition 
framework. There are primarily two algorithms to compute it: one 
is to calculate the average of the logarithm of the frame based 
posterior probability (AFBPP) [1-3]; the other is to calculate the 
phone log-posterior probability (PLPP) [5]. However, these two 
algorithms are not very accurate in some cases due to the limited 
discriminating ability of the acoustic model. In order to improve 
the vowel assessment accuracy, we suppose to employ the long-
term information of speech, which is critical to vowel perception, 
by utilizing formant. Considering the difficulty of accurate formant 
tracking, a novel kind of formant feature is suggested. That is to 
convert the formant candidate plots on the time-frequency plane to 
a bitmap and then extract its Gabor feature to represent the formant 
trajectory. We use Gaussian Mixture Model (GMM) to classify the 
formant patterns and calculate the formant classification posterior 
probability (FCPP) score to assess the pronunciation quality. Such 

the formant classification score is complementary to AFBPP and 
PLPP, so we further investigate to combine them with various 
linear or nonlinear methods, and the best result is obtained by 
using neural network to combine the three scores. 

The rest of this paper is organized as the follows: section 2 
introduces traditional phonetic evaluation method; section 3 
discusses the assessment method of formant classification; section 
4 is dedicated to the combination of scores; some experiments and 
results are given in section 5; and finally the conclusion is drawn. 

2. TRADITIONAL PHONETIC PRONUNCIATION 
ASSESSMENT METHOD 

The phonetic pronunciation quality is traditionally evaluated by 
using speech recognition techniques of hidden Markov model 
(HMM) and Viterbi decoding. Block diagram of the system is 
shown in Fig. 1. The front-end feature extraction converts the 
speech waveform to a sequence of mel-frequency cepstral 
coefficients (MFCC) and these are fed into HMM model net to do 
one-pass Viterbi decoding. The HMM model net only consists of 
the models of the learning text, and the Viterbi decoding is only a 
force alignment between the speech frames and the HMM models 
in the net. With the frame index of each HMM state and the 
accumulated observation probability of the phone segment, the 
phonetic posterior probability score is computed as the 
measurement of the pronunciation quality of each phone q . There 
are mainly two algorithms to calculate it. 
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Fig. 1. Architecture of our pronunciation evaluation system 

The first one is the average of logarithm of the frame based 
posterior probabilities (AFBPP) belonging to q  [1-3]. 
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Where ( | )t tP s x  is the frame based posterior probability of the 
force-aligned state ts  given the observation vector tx ; bt  is the 
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start frame and et  is the end frame of q . The second one is phone 
log-posterior probability (PLPP) [5].  
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Where  is the number of frames in the acoustic segment ( )qO ;
Q  is the set of Mandarin consonants when q  is consonant, 
otherwise is the set of Mandarin vowels when q  is vowel. 

The final stage of evaluation uses predetermined thresholds to 
map the posterior probability scores to evaluation grades. 

3. VOWEL PRONUNCIATION ASSESSMENT BY 
FORMANT CLASSIFICATION 

Formants have long been regarded as the dominant parameters to 
describe vowels. Formant trajectories are supposed to convey the 
long-term information that is critical to vowel identification. We 
are to use the GMM to classify the pattern of the formant 
trajectory and use the classification posterior probability score for 
pronunciation quality assessment. 

Numerous experiments have been carried out to classify a set 
of monophthong vowels of a specific language with formants [6-8]. 
It appeared that the most difficult problem is accurate automatic 
formant tracking. Errors tend to occur in highly transient phone 
boundaries [9]. We suggest a novel kind of formant feature to 
avoid the difficulty and can better represent dynamic properties of 
formant trajectory. 

3.1. Feature Extraction 

2-D Gabor function was pioneered by Daugman to model the 
spatial summation properties of simple cells in the visual cortex 
[10]. Local image features extracted by Gabor filter bank are 
widely used in face recognition, fingerprint identification, contour 
detection and many other image processing or computer vision 
applications. We propose to convert the formant candidate plots on 
the time-frequency plane to a bitmap and calculate its Gabor 
feature for formant pattern classification. As shown in Fig. 2, the 
calculation of the classification feature is described in detail as 
follows. 
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Fig. 2. Classification feature calculation process 

After the vowel portion of speech is segmented by the force-
alignment, its formant candidates are estimated at first. This is 
automatically done by using PRAAT. Differences of vocal tract 
length among different speakers result in an apparent expansion or 
compression of the frequency axis of formant trajectories, which 
will damage the performance of classification. So we seek vocal 
tract length normalization (VTLN) to compensate for the variation 
of formant location by a warp of frequency axis, as the second step 

shown in Fig. 2. With formant candidates of each frame plotted on 
a time-frequency plane, we only convert the plots in the region up 
to 4000 Hz to a bitmap, because such the region can safely contain 
all the first three formants. Then to be uniform, we resize the 
bitmaps to 200 100  pixels. 

Typically, an input image ( , ), ( , )I x y x y   ( -the set of 
image points), is convolved with a 2-D Gabor function, 

( , ), ( , )g x y x y , to obtain a Gabor feature image ( , )r x y  as the 
following [11]: 

( , ) ( , ) ( , )r x y I g x y d d                 (3) 

We use the following family of Gabor functions: 
2 2 2

, , 2( , ) exp( )cos(2 )
2

x y xg x y           (4) 

Where cos sin , sin cosx x y y x y ,
0.56 and 0.5 . In our experiments, the phase offset is set 

as 0 ; the wavelength  and the orientations  are selected 
according to experiment results. 

Suppose the filter bank has I wavelengths and J orientations, it 
will generate I J  Gabor feature images. We equidistantly split 
each image into M rows and N columns to produce M N  blocks, 
and calculate the mean ( )l

mn  and standard deviation ( )l
mn  of the 

magnitude of each block as feature elements: 
( ) ( )
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According to [6-8], inclusion of vowel duration D  will result in a 
consistent classification improvement. So the feature vector f  is 
constructed as: 

     (1) (1) ( ) ( ) ( ) ( )
11 11[ , ... , ... , , ]l l I J I J

mn mn MN MNf D         (6) 
Where l is the index of Gabor feature image, and m, n are the block 
indexes. 

f  usually has a very high dimension. However, a low-
dimensional representation of the vector is especially important for 
machine learning. We use linear discriminant analysis (LDA) to 
project the high dimensional feature to a lower dimensional space, 
and exploit the projected vector as the final classification feature. 

3.2. Classification Posterior Probability Score 

We use GMM to classify the Gabor feature for vowel 
pronunciation evaluation. One model is trained for each Mandarin 
vowel. For each coming testing feature x , a formant classification 
posterior probability (FCPP) score is calculated as: 

                        
( | )
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Where refVowel  is model of the answer vowel; V is the Mandarin 

Chinese vowel set. ( | )refP Vowel x  is mapped to evaluation grades 
by using predetermined thresholds. 
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4. SCORE COMBINATION 

Scores of AFBPP, PLPP and FCPP contain information of 
different time scale and so are complementary to each other. We 
investigate to combine them to improve the assessment 
performance by using various linear or nonlinear methods. This is 
a problem of predicting the human subjective evaluations by the 
machine scores. 

At first, we suggest the expected value of human grade h  is a 
linear combination of two or more machine scores nm  plus a bias 
term b .

1 1 2 2 ... n nh a m a m a m b                        (8) 
The linear coefficients 1 2, , ..., na a a  and b  are estimated by 
minimizing the mean square error between the predicted and the 
actual human grades.  

Probability distribution estimation is chosen as the second 
combination method. In this approach we compute the expected 
human grades by using estimates of the necessary conditional 
probabilities. The predicted human grade h  is computed as: 

1 2arg max[ ( | , ,... )]
i

i nh
h P h m m m                      (9) 

Where 1 2( | , ,... )i nP h m m m  is the estimated conditional probability 
of the human grade ih  given the machine scores 1 2[ , ,... ]nm m m .
Suppose ( ) ( ) ( )i jP h P h i j , by using Bayes rule, the predicted 

human grade h  can be deduced as: 
                      1 2arg max[ ( , ,... | )]

i
n ih

h P m m m h                    (10) 

In this work we model 1 2( , ,... | )n iP m m m h  by using Gaussian 
mixture model. 

And the last combination method is neural network. A neural 
network can be capable of implementing arbitrary maps between 
input and output spaces. With this approach, the machine scores to 
be combined are the input to a neural network; the predicted 
grades are the output values of the network; the actual human 
grades provide the targets for the training of the network. Neural 
network parameters, the weights, are adjusted by the training 
algorithm to minimize the error criterion. After some preliminary 
experiments with different network architectures, we choose the 
two-layer back propagation network with a single linear output 
unit and a hidden layer of log-sigmoid units. We vary the number 
of hidden layer units; the best performance is obtained with 10 
hidden units. The number of input units corresponds to the number 
of machine scores combined. The network is trained by using the 
mean square error criterion. A momentum term is used in the 
weight update rule to accelerate the training speed. To avoid over 
fitting to the training data and to obtain good generalization, we 
use a cross-validation set formed with 15% of the training data. 
Prediction performance is assessed after each training iteration on 
this set; the training is stopped when performance do not improve 
on the cross-validation set [3]. 

5. EXPERIMENTS AND RESULTS 

5.1. Corpus 

The following experiments are performed on the Hong Kong 
Putonghua-Shuiping-Kaoshi (PSK) pronunciation test samples. A 
PSK test set has 75 utterances, including 50 mono-syllable words 
and 25 double-syllable words. We only focus on vowel assessment 
in this paper. Each vowel in the test is graded on a 0-2 scale. A 
rating of 2 indicates excellent pronunciation, and a rating of 0 
indicates completely wrong pronunciation. We collect 195 sets of 
test samples of the same content from 195 test attendees, among 
whom half are male and half are female. 80% of the collected 
samples are used as training set and the other 20% are used as 
testing set. 

We use speech from a native Mandarin mono-syllable database 
to train the GMM model for formant classification. About 5000 
utterances are collected for every Mandarin vowel. They are 
averagely spoken by 286 native Chinese speakers, among whom 
half are male and half are female. 

5.2. Methods 

The popular way to evaluate the performance of a pronunciation 
assessment system is to calculate the correlation coefficient (CC) 
between machine grades and human expert’s grades. Both the 
testing and the training corpora have been graded by 5 human 
experts, whose average inter-rater CC is 0.94. We use mean of the 
human experts’ grades to calculate the human-machine grading CC. 

At first we use AFBPP and PLPP to grade the vowel 
pronunciation quality. Two thresholds are trained on the training 
data set to map those scores to grades of 0, 1 and 2, and then 
applied to the testing data set. The vowels’ average CC is shown in 
Table 1. It looks like that the PLPP scores show better correlation 
with human grades. 

Table 1. CC of traditional phonetic posterior probability score 
Machine score Average CC 

AFBPP (Baseline) 0.832 
PLPP 0.847 

Then the same experiment procedure is followed to exam the 
FCPP score. We compare performances of four kinds of formant 
features. The first one is Gabor feature. Extensive experiments are 
done to determine the optimal Gabor feature parameters. We 
set 10  and [0 ,45 ,90 ,135 ] to generate the Gabor filter 
bank according to Equation (4) and equidistantly split each Gabor 
feature image into 10 rows and 4 columns, that is 40 blocks. Mean 
and standard deviation of each block together with the vowel 
segment duration form the feature f , whose dimension is 
1 4 10 4 2+1=321 . By LDA analysis, we reduce the vector 
size to 50. In order to demonstrate the profit of Gabor 
transformation, we compose the second kind of feature with means 
and standard deviations of the original untransformed image 
blocks (Non-Gabor M&SD). The original image is also split into 
10 rows and 4 columns that lead to a vector size of 81 (including 
vowel duration). After LDA analysis, the dimension is reduced to 
50, too. The third kind of feature is constituted by the vowel 
segment duration and direct formant measurements, which are 
sampled at 20%, 50% and 80% of the vowel continuance [7].  
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Table 3. CC of different mapping methods and combinations of machine scores 
Combination method Machine scores Average CC Relative CC improve to baseline

Linear regression AFBPP+PLPP 0.852 2.4%
Linear regression AFBPP+FCPP 0.862 3.6%
Linear regression PLPP+FCPP 0.860 3.4%
Linear regression AFBPP+PLPP+FCPP 0.864 3.8%

Distribution estimation AFBPP+PLPP 0.859 3.2%
Distribution estimation AFBPP+FCPP 0.876 5.3%
Distribution estimation PLPP+FCPP 0.876 5.3%
Distribution estimation AFBPP+PLPP+FCPP 0.879 5.6%

Neural network AFBPP+PLPP 0.885 6.4%
Neural network AFBPP+FCPP 0.910 9.4%
Neural network PLPP+FCPP 0.909 9.3%
Neural network AFBPP+PLPP+FCPP 0.913 9.7%

And the last one utilizes third-order Legendre polynomials of 
the formant trajectories [8] together with duration of the vowel 
segment. Correlation coefficients of the four features are compared 
in Table 2. It can be seen that the Gabor feature results in the best 
CC of 0.842, which is better than that of AFBPP score. 

Table 2. CC of formant classification posterior probability score 

Formant feature Feature
dimension 

Average
CC

Relative CC 
improvement 

to baseline 
Gabor feature 50 0.842 1.2% 
Non-Gabor

M&SD 50 0.818 -1.7% 

Formant
samples 10 0.819 -1.6% 

Legendre 
polynomials 13 0.821 -1.3% 

At last we evaluate the three different types of predictors, 
including linear regression, probability distribution estimation, and 
neural network, in mapping and combining different types of 
machine scores to increase the correlations. The parameters of the 
regression and estimation models are trained on the training set 
and evaluated on the testing set. 

The evaluation results are shown in Table 3. It indicates that all 
combinations of scores can lead to an increase of the average CC. 
The inclusion of FCPP score is especially useful because it 
contains long-term information which is critical to vowel 
identification. The nonlinear combination methods are better than 
the linear one. The best case is combining the three scores with 
neural network, which increase the correlation by 9.7% with 
respect to baseline. 

6. CONCLUSION 

Accurate formant tracking is a very difficult problem, which limits 
its application in speech recognition and pronunciation assessment. 
This paper bypasses the difficulty by using Gabor feature to 
represent the formant trajectory and gets good results. The formant 
trajectory contains long-term information of speech, which is 
critical to vowel identification. After the formant classification 
score is combined with the traditional two kinds of phonetic 
posterior probability scores, the correlation between machine and 
human grades is greatly improved. It should be noticed that the 
mapping from machine scores to evaluation grades is more likely 

to be a nonlinear function than a linear one. The combination 
method of neural network gets the best CC of 0.913, which is very 
close to the CC of inter-human rating of 0.94. 
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